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We first give a short definition of quantum states and operators, and
explain how quantum states evolve in time. We then explain what
quantum optimal control is and how to frame it as nonlinear program-
ming (optimization) problem which can be solved computationally.
Finally, we explain the GRAPE technique.

Quantum Computing

The state of a closed quantum system can be represented by a complex-
valued state vector ψ ∈ CN . Each observable 1 of the system is asso- 1 A quantity that can be physically

measured.ciated with a Hermitian matrix O ∈ CN×N . The eigenvalues of the
operator are the possible outcomes of the measurement2, and the 2 Because the matrix is Hermitian, the

eigenvalues are real, which makes sense
because the eigenvalues are physically
measurable quantities.

corresponding eigenvectors are the states for which that measure-
ment will be observed. We may write the state vector in terms of the
orthonormal eigenvectors of O:

ψ = c1ψ1 + c2ψ2 + · · ·+ cNψN . (1)

Then |ci|2 gives the probability of observing the state ψi when the
system is measured, upon which the system is said to collapse to
the measured state. For this reason, the coefficients {ci} are called
probability amplitudes. Consequently, the length of the state vector is
∥ψ∥2

2 = 1 at all times because the probabilities of observing each
possible outcome must sum to one. This also implies that the time
evolution of the state vector is unitary, since unitary matrices pre-
serve length.

In the quantum computing literature, states are often represented
using bra ket notation, where we may denote a state by |ψ⟩. the state
ψ ∈ CN represents |ψ⟩ in a particular measurement basis. Similarly,
a matrix O represents the operator Ô in a particular basis. In other
words, |ψ⟩ is just a way of labeling a physical state, whereas a corre-
sponding state vector ψ ∈ CN gives information on the outcomes of
measuring the system. We switch between the two notations when
convenient, but mostly stick to representing states as complex-valued
vectors.3 3 |ψ⟩ is called a ket, and ⟨ψ| ∼ ψ†

is called a bra. Cutely, the bracket
⟨ψα|ψβ⟩ = ψ†

αψβ represents an inner
product. Many by-hand calculations
can be simplified using inner products
and orthonormality of eigenvectors, so
this notation can be convenient when
working with pen and paper.

In this work, we only consider closed quantum systems. In a quan-
tum computing context, this means considering only time scales
short enough that there is no significant interaction between the
quantum computer and the environment. Open quantum systems,
which model the interaction between the quantum computer and the
environment, are much larger and more computationally challenging,
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but the algorithms for performing quantum optimal control on them
are essentially the same as for closed quantum systems.

Governing Equation: Schrödinger’s Equation

The time evolution of the state vector from an initial state ψ0 in a
closed quantum system is governed by Schrödinger’s equation4 4 We always choose our units so that

h̄ = 1.
d
dt

ψ(t) = −iH(t)ψ(t), ψ(0) = ψ0 ∈ CN , (2)

where H(t) ∈ CN×N is the Hamiltonian of the system, the matrix
corresponding5 to the measurement of the total energy of a system.6 5 In the sense of observables, described

in the previous section.
6 Schrödinger’s equation is a postulate
of quantum mechanics. It cannot be
derived, but the idea that the dynamics
of a quantum system are determined by
the linear operator corresponding to the
energy of the system can be classically
motivated; in Hamiltonian mechanics,
the dynamics of a classical system
are determined by the Hamiltonian
function of the system, which usually
gives the total energy of the system.

In most quantum computing hardware, the Hamiltonian takes the
form:

H(t) = Hd + f1(t)Hc,1 + f2(t)Hc,2 + · · ·+ fNc(t)Hc,Nc . (3)

Hd is called the drift Hamiltonian, because even when the functions
f1, . . . , fNc are all zero, the state vector still drifts because of the dy-
namics caused by Hd.7 Hc,1, . . . , Hc,Nc are called the control Hamilto-

7 The term system Hamiltonian is also
used to describe Hd.

nians, because in a quantum computer the control functions f1, . . . , fNc

correspond to the amplitude of laser pulses (or something similar)
which we can program in order to control the dynamics of the system.

Defining the Quantum Optimal Control Problem

Quantum optimal control refers to the process of manipulating the
Hamiltonian in (2, 3) to implement some desired behavior. The two
most common types of quantum optimal control problems are state
transfer problems and gate design problems.

State Preparation Problems

In a state preparation problem, we start from some known quan-
tum state ψ0 which can easily be prepared on a quantum computer8. 8 Usually, the initial state is the ground

state of the quantum computer, which
the quantum computer naturally
relaxes to over time

We want to transfer the state to some desired state ψTarget over some
period of time 0 ≤ t ≤ T. Because the Hamiltonian controls the dy-
namics of the system, do this by searching for a Hamiltonian which
causes the desired dynamics.

In order to quantify the “closeness” of two quantum states, we use
the fidelity between the two states:

F(ψα, ψβ) = |⟨ψα|ψβ⟩|2 = |ψ†
αψβ|

2 = F(ψα, ψβ). (4)

The fidelity has several properties which make it a good way to
quantify the “closeness” of two quantum states.
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1. The fidelity between two states F(ψα, ψβ) is 1 when ψα = ψβ, and 0
when the two states are orthogonal.

2. The fidelity does not depend on the global phase of the states. That
is, F(eiδα ψα, eiδβ ψβ) for all δα, δβ ∈ R. This is physically significant
because the global phase of a state cannot be measured.9 9 This means that the states√

2
−1

(ψ0 + ψ1) and eiδ
√

2
−1

(ψ0 + ψ1)
are indistinguishable. However, we can
measure a relative phase, so the states
√

2
−1

(ψ0 + ψ1) and
√

2
−1

(ψ0 + eiδψ1)
are distinguishable, although their
probability amplitudes have the same
magnitude.

Then we can write our optimal control problem as

minimize
f1,..., fNc

1 − |ψ†
Target, ψ(T)|2,

where
d
dt

ψ(t) = −i

(
Hd +

Nc

∑
n=1

fn(t)Hc,n

)
ψ(t), ψ(0) = ψ0 ∈ CN .

We are trying to find control functions { fi} which implement a
Hamiltonian which minimizes the infidelity between the initial state
and the target state.

I have no idea how to solve this optimization problem computa-
tionally, since I have no idea how to program a computer to search
over the spaces of arbitrary functions f : R → R.10 And analytic 10 If you know how to do this, please let

me know!solutions are only known for a select few problems that involve very
small quantum systems. To solve the optimization problem compu-
tationally, we introduce the control vector θ ∈ Rnc ·Nc to parameterize
the control functions. Each control function is a linear combination11 11 In principle, the dependence may be

nonlinear, but using a linear depen-
dence keeps the parameterization of the
control functions simple. A linear de-
pendence is also computationally useful
because it makes taking the gradient of
the control functions trivial.

of nc basis functions.12 For notational convenience, we can write the

12 In principle, the number of basis
functions can be different for each
control function, but keeping the
number the same makes it easier to
write.

control vector in matrix form as Θ ∈ Rnc ·Nc , with Θj,k = θ(j−1)nc+k.

f j(t; θ) =
nc

∑
k=1

Θj,kbj,k(t), j = 1, . . . , Nc. (5)

The choice of the basis functions bj,k is called the control pulse ansatz.
We can finally write our optimization problem as

minimize
θ

1 − |ψ†
Target, ψ(T)|2, (6)

where
d
dt

ψ(t) = −i

(
Hd +

Nc

∑
n=1

fn(t; θ)Hc,n

)
ψ(t), ψ(0) = ψ0 ∈ CN .

We are searching for control parameters θ which determine the The semicolon in f (t; θ) just indicates
that θ does not change often like t
does. We optimize over θ, but we only
ever solve Schrödinger’s equation for a
constant value of θ.

control functions { fi(t; θ)}, which determine the Hamiltonian H(t),
which controls the dynamics of the system, in order to minimize the
infidelity between ψ(T) and the target state ψTarget.

Written in terms of θ, the optimization problem is now a non-
linear programming (NLP) problem with no constraints, where
Schrödinger’s equation is solved numerically to find ψ(T) and eval-
uate the objective function in (6). Constraints may be added, for
example to keep the amplitude of the control functions below some
maximum determined by experimental constraints. This NLP may be
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solved by direct-search methods13, or by gradient-based methods.14 13 E.g. Nelder-Mead.
14 E.g., gradient descent, ADAM, or
quasi-Newton methods such as L-BFGS.

True second-order Newton methods could also be used, but they re-
quire computing the Hessian of the objective function, which is very
computationally expensive.

Gate Design Problems

Quantum gates are the basic building blocks of quantum algorithms.
In this way, they are analogous to classical logic gates15. Each gate 15 AND, OR, NOT, XOR, etc.

is a unitary transformation which acts on a subsystem of the full
quantum system.16 An algorithm may be specified using a circuit 16 E.g., it operates on only a few qubits

in a quantum computer consisting of
many qubits.

diagram, which maps out the gates used in a quantum algorithm,
which qubits they are applied to, and in what order. To characterize

Figure 1: Circuit diagram of the Quan-
tum Fourier Transform algorithm.a gate, it is sufficient to know how the gate transforms the elements

of a basis of the subsystem. This allows us to specify a gate using a
truth table, the same way we would specify a classical logic gate. For
example, the truth table of a CNOT (Controlled NOT) gate is given
in table 1, and the matrix representation of the gate (i.e. the unitary
transformation it applies, in the standard/computational basis) is

Initial State Final State

|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

Table 1: Truth table that defines a
CNOT gate.CNOT ψ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ψ.

Roughly speaking, this is very similar to the state preparation
problem, only now we are looking for a Hamiltonian which transfers
several initial states to several corresponding target states. Strictly
speaking, we are looking a Hamiltonian which generates a target
unitary matrix UTarget. To see why optimizing for a specific target
unitary matrix is different than optimizing the ability of the unitary
to prepare several final states from several initial states, consider the
unitaries UA =

[
0 1
1 0

]
and UB =

[
0 1
i 0

]
. We have UA|0⟩ = |1⟩, UA|1⟩ =

|0⟩, UB|0⟩ = i|1⟩, UB|1⟩ = |0⟩. Because the global phase of a state
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cannot be measured, from a multiple state preparation point of view,
the two unitaries both “perfectly” perform the state preparations
|0⟩ → |1⟩, |1⟩ → |0⟩. The unitaries create different relative phases
(which are measurable) when they operate on states other than the

initial states in the state preparation problems: UA
√

2
−1

(|0⟩+ |1⟩) =√
2
−1

(|1⟩+ |0⟩), UB
√

2
−1

(|0⟩+ |1⟩) =
√

2
−1

(i|1⟩+ |0⟩) .
When we say a Hamiltonian generates a unitary matrix, we

mean it in the the dynamics caused by the Hamiltonian (according
to Schrödinger’s equation) can by represented by a unitary time-
evolution matrix U(t):

ψ(t) = U(t)ψ0 = e−i
∫

H(t)dtψ0.

We want to choose a Hamiltonian (parameterized through θ), which
over a period of time 0 ≤ t ≤ T generates a unitary U(T) that is
“close” to UTarget ∈ CN×N . As before, we need a way to quantify the
“closeness“ of two unitaries. We use the gate infidelity:

F(Uα, Uβ) =
1

N2 |⟨Uα, Uβ⟩F|2 =
1

N2 |Tr[U†
αUβ]|2. (7)

As with the state fidelity, the gate infidelity takes a value between 0 The Frobenius inner product ⟨A, B⟩F =
Tr[A†B] can be computed simply as
∑j,k Aj,kBj,k .

and 1, is invariant to changes in the global phase of the unitaries.
Just as we did with state preparation problems, we parameterize

the control functions in terms of a control vector θ so we can formu-
late the quantum optimal problem as an NLP problem, which can be
solved computationally. IN denotes the N by N identity matrix.

minimize
θ

1 − 1
N2 |Tr[U†

Target, U(T)]|2, (8)

where
d
dt

U(t) = −i

(
Hd +

Nc

∑
n=1

fn(t; θ)Hc,n

)
ψ(t), U(0) = IN .

GRAPE Optimization

Optimizing even a two-qubit state transfer or gate design problem
is moderately challenging, and three-qubit problems are quite diffi-
cult. 17 As the systems become more difficult to control, more control 17 Especially when the qubits are not

treated as true two-level systems, but
as 3 or 4 level systems, which is more
accurate (technically, for most quantum
computing architectures each qubit has
an infinite number of levels).

parameters are typically needed in order to find a suitable set of con-
trol functions. The increased number of control parameters make
the optimization more challenging do to the increased number of
search dimensions, but gradient-based methods excel at navigating
high-dimensional optimization landscapes.18 To use these methods, 18 Although as the number of qubits

increases, many optimization tasks
suffer from the barren plateau problem,
which makes optimization extremely
difficult even with gradient-based
methods.

we need to be able to compute the gradient. A naive way is to ap-
proximate the partial derivatives of the objective function using finite
differences, e.g.

∂J
∂θn

≈ J (θ+ hen)−J (θ)

h
,
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but then the gradient is inexact, and most importantly, comput-

We denote the n-th vector in the stan-
dard basis by en.

ing the gradient a single time requires solving at least as many
Schrödinger equations as there are control parameters.

The GRAPE (GRadient Ascent Pulse Engineering) method19 clev-

19 Navin Khaneja, Timo Reiss, Cindie
Kehlet, Thomas Schulte-Herbrüggen,
and Steffen J. Glaser. Optimal control
of coupled spin dynamics: design
of nmr pulse sequences by gradient
ascent algorithms. Journal of Magnetic
Resonance, 172(2):296–305, 2005. URL
https://doi.org/10.1016/j.jmr.2004.

11.004

erly computes the gradient exactly, and with a cost of solving only
two Schrödinger equations, regardless of the number of control pa-
rameters. It does this by using a piecewise constant control pulse
ansatz, where gate duration is divided into nc time intervals of width
∆t = T/nc, and the control functions are constant during that time
interval. Specifically, in (5), the basis functions are

bj,k(t) =

1, if (k − 1) T
nc

≤ t < k T
nc

0, otherwise

∆t
θ2

t

f1(t; θ)

Figure 2: An example of a piecewise
constant control function, the kind
which the GRAPE method uses.

Simply stated, Θj,k is the amplitude of the j-th control function
during the k-th time interval.20

20 This control pulse ansatz may seem
arbitrary, but the control functions
are usually shaped using arbitrary
waveform generators, for which the
idealized output is piecewise constant.

For simplicity, we will consider a problem with only one control
Hamiltonian, and no drift Hamiltonian.

d
dt

U(t) = −i f1(t; θ)Hc,1U(t), U0 = IN .

Because the Hamiltonian is constant across each time interval, the
time evolution across each interval can be computed using matrix
exponentials. And we can write the time evolution across the whole
duration as

U(T) = Unc · · ·U1U(0) = e−iθnc Hc,1T/nc · · · e−iθ1 Hc,1T/nc U(0). (9)

Now, the partial derivatives of the gate infidelity are

∂

∂θn

(
1 − 1

N2

∣∣∣Tr
[
U†

TargetU(T)
]∣∣∣2) = − 2

N2 Re
(

Tr
[

U†
Target

∂U(T)
∂θn

]
Tr
[
U†

TargetU(T)
])

. (10)

Performing the matrix multiplications and evaluating the traces in
the above expression is cheap, but computing ∂U(T)/∂θn

21 for each 21 ∂U(T)/∂θn is sometimes called a
sensitivity.n = 1, . . . , nc is expensive. Naively, they be obtained for each θn by

solving a system of ODEs22 similar to Schrödinger’s equation, but 22 Perhaps we could have suspected
this intuitively. Changing a control
parameter changes the dynamics, so to
know how the state at the end of the
dynamics changes with respect to each
control parameter we need to look at a
new dynamical system for each control
parameter.

with a forcing term:23

23 This is actually done in the GOAT
(Gradient Optimization) of Analaytic
ConTrols method.

Shai Machnes, Elie Assémat, David
Tannor, and Frank K. Wilhelm. Tunable,
flexible, and efficient optimization
of control pulses for practical qubits.
Physical Review Letters, 120(15), April
2018. URL http://dx.doi.org/10.

1103/PhysRevLett.120.150401

d
dt

∂U(t)
∂θn

= −i f1(t; θ)Hc,1
∂U(t)

∂θn
− i

∂ f1(t; θ)

∂θn
Hc,1U(t).

But, because only the n-th unitary in (9) depends on θn, we can write
∂U(T)/∂θn analytically as the simple expression

∂U(T)
∂θn

= −i∆tUnc · · ·Un+1Hc,1UnUn−1 · · ·U1U(0)

https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1103/PhysRevLett.120.150401
http://dx.doi.org/10.1103/PhysRevLett.120.150401
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Evaluating the partial derivative only involves inserting one extra
matrix multiplication into the sequence of unitaries that we apply to
U(0) in order to get U(T). Even better, we can write

U†
TargetU(T) =

(
U†

n+1 · · ·U†
nc UTarget

)†
(Un · · ·U1U(0)) ,

and

U†
Target

∂U(T)
∂θn

= −i∆t
(

U†
n+1 · · ·U†

nc UTarget

)†
Hc,1 (Un · · ·U1U(0)) . (11)

Then the procedure is to first compute U(T) = Unc · · ·U1U(0). Then,
for n = nc, . . . , 1, use (11) to compute U†

Target(∂U(T)/∂θn). Because

U†
n+2 · · ·U†

nc UTarget and Un−1 · · ·U1U(0) were already computer dur-
ing the previous iteration, this only requires computing two matrix
exponentials24 and performing three matrix-matrix multiplications, 24 The matrix exponentials U1, . . . , Un

may computed once and stored, if there
is sufficient memory available.

which is much less expensive than computing nc matrix exponen-
tials25 and performing nc + 1 matrix-matrix multiplications, which

25 Computing matrix exponentials is a
computationally expensive operation,
which is a drawback of the GRAPE
method.

is cost of computing and multiplying all the unitaries in (11). During
each iteration, once we have computed U†

Target∂U(T)/∂θn we can use
(10) to compute the n-th partial derivative of the objective function
(the infidelity). This concludes the method.

The GRAPE method was an important development, made around
2005. Since then, major improvements have been made, but modern
developments in open-loop26 quantum optimal control generally still 26 In quantum optimal control, open-

loop means completely simulation-
based, with no experimental feedback.
If there is experimental feedback, the
method is called a closed-loop method.

rest on doing some kind of forward evolution, adjoint evolution
scheme which produces exact gradients and does not scale heavily in
cost with the number of control parameters.

The GRAFS (GRadient Ascent in Function Space) method27 uses 27 Dennis Lucarelli. Quantum optimal
control via gradient ascent in function
space and the time-bandwidth quantum
speed limit. Physical Review A, 97

(6), June 2018. ISSN 2469-9934. doi:
10.1103/physreva.97.062346. URL
http://dx.doi.org/10.1103/PhysRevA.

97.062346

a similar technique as the GRAPE method; the control functions
are piecewise constant, and the time evolution is performed using
matrix exponentiation, which allows the gradient to be computed
analytically and cheaply (using a forward solve and an adjoint solve).
The major difference is that although the control pulses are piece-
wise constant, the control parameters do not correspond directly to
the amplitudes of the control functions across each time interval.
Instead, the control functions are parameterized in terms of continu-
ous basis functions, as we did in (5). The control functions are then
discretized into piecewise constant functions, and the relationship be-
tween the control parameters and the discretized function amplitudes
is used used to compute the gradient in an efficient way, similar to
the GRAPE method.

http://dx.doi.org/10.1103/PhysRevA.97.062346
http://dx.doi.org/10.1103/PhysRevA.97.062346
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Disclaimers

These notes were made quickly, without much proofreading. Please
let me know if you find any mistakes!

I made many simplifications to make this handout more acces-
sible. For example, qubits are two-level systems, but real hardware
implementations of qubits are often infinite-level systems. We deal
with this by including a couple of the lowest energy levels in our
model, and adding to our objective function a term that penalizes the
population of the excited states beyond the first two energy levels.

Questions

I have some questions I can’t answer because I don’t know enough
about classical optimal control theory. I would appreciate any input
from people more familiar with classical optimal control!

1. What would the Hamilton-Jacobi-Bellman equations look like for
a quantum optimal control problem, and why don’t we solve
the quantum optimal control problem by solving the Hamil-
ton–Jacobi–Bellman equations?28 28 My guess is that it has to do with the

curse of dimensionality.
2. Are the GRAPE method and similar methods (methods that use

a forward/adjoint scheme to compute the gradient) the same as
Pontryagin’s maximum principle? If not, why don’t we use it?29 29 According to section 3 of the GRAFS

paper, GRAPE is essentially Pontrya-
gin’s maximum principle with trivial
costate dynamics.

Dennis Lucarelli. Quantum optimal
control via gradient ascent in function
space and the time-bandwidth quantum
speed limit. Physical Review A, 97

(6), June 2018. ISSN 2469-9934. doi:
10.1103/physreva.97.062346. URL
http://dx.doi.org/10.1103/PhysRevA.

97.062346
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